II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

MATERIAL SCIENCE AND METALLURGY (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Using neat sketches explain the following	L2	CO1	6 M	
		imperfections:				
		(i) Dislocations,				
		(ii) Grain boundary and				
		(iii) Point defects.				
	b)	Draw the unit cells of Simple cubic, BCC, FCC	L2	CO1	8 M	
		crystal structures and mention the co-ordination				
		number of each unit cell. Give one material				
		example for each unit cell.				
OR						
2	a)	Explain clearly how the Miller indices are	L2	CO1	6 M	
		designated to the crystallographic planes. Sketch				
		neatly the following planes in the cubic lattice:				
		(100), (121), (103).				
	b)	Show that FCC is closely packed than that of	L2	CO1	8 M	
		BCC.				
		Dogo 1 of 4		•		

		UNIT-II			
3	a)	Explain the factors governing the formation	of L2	CO2	6 M
		substitutional solid solutions.			
	b)	Two metals A and B have 100% mutua	al L3	CO2	8 M
	,	solubility in the liquid and solid states. Th	ie		
		melting points of pure metals A and B are			
		800°C and 600°C respectively. Details of th			
		start and end of solidification of various alloy			
		in the series are as follows:	B		
		Alloy of Temperature at Start of Temperature at End of			
		Composition Solidification (°C) Solidification (°C)			
		90% A +10% B 798 750 70% A + 30% B 785 705			
		50% A + 50% B 757 675			
		30% A + 70% B 715 645			
		10% A + 90% B 650 615			
		i. Draw the phase diagram of the serie	es		
		if there are no solid-state reaction	ns		
		and label all regions.			
		ii. Predict the number, type, relativ	ve		
		amounts and concentration of phase	es		
		present in an alloy of 40% A and 60%			
		B at 700°C.			
		OR			
4	a)	Draw a neat iron–iron carbide phase diagram a	nd L2	CO2	8 M
		identify all phases present at differe			
		temperatures and carbon percentages.			
	b)	Consider 3 kg of austenite containing 0.3 wt%	C L3	CO2	6 M
	0)	cooled to below 727° C.			0 101
		i) What is the proeutectoid phase?			
			nd		
		ii) How many kilograms each of total ferrite a	na		

		cementite form?					
		iii) How many kilograms each of pearlite and the					
		proeutectoid phase form?					
	UNIT-III						
5	a)	What is a TTT curve? Explain with a neat sketch	L2	CO3	6 M		
		of the TTT curve for the eutectoid steel. Describe					
		the information that can be gathered from the					
		diagram?					
	b)	Explain how the following heat treatments are	L3	CO3	8 M		
		applied with reference to the applications in steel					
		industry					
		(i) Normalizing, (ii) Annealing, (iii) Hardening,					
		(iv) Tempering.					
		OR					
6	a)	What is the purpose of case hardening? Classify	L2	CO3	6 M		
		the methods of case hardening and describe					
		briefly any two of them.					
	b)	Using the relevant portion of the iron-iron	L3	CO3	8 M		
		carbide equilibrium diagram and TTT diagram,					
		explain the 'normalizing' heat treatment of a					
		plain carbon steel containing 0.8% carbon. What					
		changes in properties and microstructure do you					
		expect due to the heat treatment?					
UNIT-IV							
7	a)	Discuss briefly the structure, properties and uses	L2	CO4	7 M		
		of gray cast iron and white cast iron.					

	b)	What are the different types of Tool steels?	L2	CO4	7 M	
		Explain any two in detail about the properties,				
		alloying elements, and applications with				
		examples.				
		OR	1	1		
8	a)	Explain the properties, alloying elements, and	L2	CO4	7 M	
		applications of Shock Resistance and Hot-Work				
		Tool Steels.				
	b)	Explain the properties, alloying elements, and	L2	CO4	7 M	
		applications of Ferritic and Austenitic stainless				
		steels with examples.				
		UNIT-V				
9	a)	What are α and β phases in Cu/Zinc alloys? Give	L2	CO5	7 M	
		applications of following copper-base alloys:				
		Cartridge Brass, Gun Metal, and Naval Brass.				
	b)	How the composites are classified? Explain the	L2	CO5	7 M	
		properties and applications of any two				
		composites.				
OR						
10	a)	Explain the alloying elements, properties and	L2	CO5	7 M	
		applications of Duralumin, Hindalium, and				
		Magnalium.				
	b)	Explain the alloying elements, properties and	L2	CO5	7 M	
		applications of α , β and α - β Alloys.				